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SOME ASPECTS OF THREE-DIMENSIONAL BOUNDARY LAYER FLOWS

ABSTRACT

The equations for laminar boundary layer flow over a general su.i'race
in three-dimensions are analyzed in a normal coordinate system. The
invariance properties of these equations are found ue:l.ng the concept of
subtensors. The boundary layer equations are not tensor equations but
subtensor equations. Conditions for the Cartesian form of the equations
are given and a criterion for no secondary flow is found in terms of the
geodesics of the body surface. The displacement effect of the boundary
layer is also discussed.




SYMBOLS

¢ a’aﬁ C . Surface metric tensor
8, J Space metric tensor |
Gl ,62 Components of vector vhose surface divergence
is zero
ha2 Surface metric for orthogonal coordinates
Hia Space metric temsor for orthogonal coordinstes
Geodesic curvature of surface atx;é,anlinel
T Unit normal vector to a curve
u,u, “3)
or w, Uy, uz, » Boundary layer velocity components
¢
or u, vV, w E
) U, Vv 7 Tangential oomponents of external flow velocity
2 3
X, x , X

Normel coordinates

bxl B2 "Mass flow defects” b
A Displacement surface

A Unit tangent vector to a curve

v Kinematic viscosity

x Ratio of pressure to (constant) density

Subscripts and superscripts
1,J, ete. Have the range 1, 2, 3.
a,p, ete. Have the range 1, 2.




INTRODUCTION

In recent times interest in three-dimensional boundary-layer flows,
measured by the number of published papers on the subject, has grown
considerahly. A review of the subject is given by Sears[L] . Most of
the work cited by Sears is concerned with the solutions to particular
problems. To the author's knowledge the only general discussions of
boundary layers in three-dimensional flows are contained in the work of
Howarth [2] , Moore [3] , and Hayes [h] . However there is also some work
of C. C. Lin, contained in Chapter 18 of [5] , in which the appropriate
equetions are derived without much discussion. This latter work seems
to be the first to derive the boundary layer equations for a general curved
surface but has been overlocked by most authors. The way in which Lin
derives the equations turns out to be useful in discussing the invariance

properties of the boundary layer eguations.

Tn this paper it is first shown that Lin's approach carries over to
a more general class of coordinate systems., Certain invariance properties
follow from examining the resulting equations. Now it is known that the
two-dimensioﬁal boundary layer equations are not tensor equations and one
would expect the same result in three-dirensions (In [h] , Hayes seems to
{mply the contrary). However, in the language of [6] , the boundary layer
equations are subtensor equations which means that they are invariant with

_respect to certain types of coordinate transformations. This does not

contradict the work of Lagerstrom and Kaplun, [7]and[§] , where the non-
tensor character of the boundary layer equations is used to define an
"optimum coordinate gystem". A similar procedure could be developed for
three-dimensional flows, however & more general coordinate system than

that used here would have to be considered.

From the subtensor form of the equations, it is easily shown that
they reduce to the "cartesian form” (as is true for any two-dimensional
flow) for eny surface whose Gaussian curvature is zero if appropriate
coordinatles are used. Howarth, [2] , concludes that this happens only for
planes and cylinders. The curvature effects that Howarth describes include




property that the distance expression is given by
' 2 Q. p : 32
ds” =
8 8 dx dx" + 353(dx )

that is,
85a =

There is no unique way of choosing our normal coordinate system since all
that is required is that the given surface be one of the family. A simple
special case is the geodesic normal coordinate system in which the family
of surfaces is obtained by measuring off constant distances from a given
surface along the geodesics which cut the surface orthogonally. In this
special case

€33 = 1

. This is the coordinate system used by Lin [5] .

The surface x5 = 0 is, in general, a Riemannian 2-space. In this

subspace we can carry out tensor operations and these wi_.ll be intimately
related to the tensor operations ¢f the parent 3-space. We use a comma

to denote covariant differentiation in the 3-space and a semi-colon for

the same operation in the subspace. A set of quantit:_l.es Ta vhich trans-
form according to the law

T, =Ty (xP/ax%)

under a transformation of the form
1° ] . f(a) (xﬁ)
3 .3 (1)

is called a subtensor. If a tensor T:I. is split up into tvwo groups ‘I‘ '1'3
then for (1) T, is a subtensor and '1‘5 is a subinvariant, and simila.x

for higher order tensors. Also the Christoffel symbols, in which one or
more of the indices have the value 3, are subtemnsors. A more detailed
discussion of subtensors is given in [6:' .




point of space. The parameter of the family of surfaces is denoted by x

the effects of a curvilinear cooruisate system. (In [5] » Moore states
that the Cartesian form applies to any curved surface which is certainly
not true.) . ’ . N

Using the streamline coordinates as in [h:l » 1t follows that a
boundary layer flow is essentially two-dimensional if there is no
secondery flow. A simple criterion for no secondary flow is given in
terms of the geodecics of the surface. Finally the displacement effect of
the boundary layer i1s discussed. This is done in a different way than
by Moore, [9] » and some differences between the two- and three- dimensional
cases are discussed. X

Only laminar flows of an incompressible, non-conducting fluid are
discussed. Some of the conclusions should hold in more general cases 5
however. Also body forces have been neglected and difficulties due to
separation effects are not discussed. : .

THE BOUNDARY LAYER EQUATIONS

In applying the boundary layer concept to the flow of a ¥iscous
fluid we have some given surface to consider, for example a solid body
or en interface between two fluids. This basic surface is used to define
& coordinate system: it is one of the coordinate surfaces. A convenient
class of coordinate systems is the normal coordinate systems, [6] » vwhich
is defined as follows. A given one-parameter family of surfaces in a
Riemannian N-space hes a family of orthogonal trajectories such that,
under very generel conditions, only one trajectory passes through each "
and on one of the surfaces a coordinate system xl y eeey xN'l is set up.
We shall be concerned with a Euclidean 3-space although the derivation of
the boundary layer equations would proceed in the same way for more
general spaces.

The convention 1s adopted that Greck suffixes have the range 1, 2 and
small Latin suffixes the range 1, 2 » 3. The given surface over which we

consider the boundary layer flow is the onec on which the coordinates xa are '
defined and for this surface x3 = 0. Normal coordinate systems have the




property that the distance expression is given by

2 .
ds”~ = 8yp &% + 353(dx5)2

350-

There is no unique way of choosing our normael coordinate system since all
that is required is that the given surface be one ‘of the family. A simple
special case is the geodesic normal coordinate system in which the family
of surfaces is obteined by measuring off constent distances from a given
surface along the geodesics which cut the surface orthogonally. In this
speclal case

855 = 1
. This is the coordinate system used by Lin [5] .

¢ . The surface x3
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to denote covariant differentiation {n the 3-space and a semi-colon for
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form according to the law

T = Ty (/3%

under a transformation of the form
x|a o f(a) (xﬂ)
3.0 (1)

x'" = x

is called a subtensor. If a tensor T:I. is split up ipto tvo groups Ta’ '1‘3
then for (1) T, 18 & subtensor and '1‘3 is a subinvariant, and similarly

" for higher order temsors. Also the Christoffel symbols, in which one or
more of the indices have the value 3, are subtensors. A more detailed

discussion of subtensors is given in [6] .




The derivation of the boundary layer equations is straight-forward
but tedious. The procedure here is essentially the same es Lin's for the
special case of a geodesic normal coordinate system end therefore will ) .
not be discussed in detail. (Some errors were found in the deta_.ils of
[_5] but these only affected terms which drop out in the boundary layer
approximation.) Starting from the Navier-Stokes equations in tensor form

J = vk .
(Bui/bt) +utug, = veTu, g - Ty
(2)
'3 =0
vhere x is the ratio of pressure to the constant density, the following
steps are necessary. The momentum equations are split up into two groups
(as illustrated above with '1‘1); the covariant derivatives are expressed

in terms .of the "sub-covariant derivatives"; a transformation

= x’ V12 )y Ug = u}/vl/2 (3)

is applied; all quantities, including the metric tensor and Christoffel
symbols, are expanded in a power series in vl/ 2 ; the equations for the

lowest order terms then yield the boundary layer equations
(dug/3t) + wPu, o + (Us/Bss) (A /30) = - .o + (Puy/38%) /ey

ox/df = 0 (&)

uﬁ;B + CB“B + (btJ}/b;)/g33 =0

vhere a
ca = (8833/63‘ )/2833

and the metric tensor for (4) is L whare

2
&y ga-a(xl,x ,0)
The boundary layer equations (4) reduce to those given by Lin for 833 = 1.
(Note that, in the proced{xre outlined ebove, nothing is implied about y
the higher approximations obtained from the series expansion. Consideration
of these involves significant difficulties, [13] .) .
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Under transformations of the form (1) it is easily seen:that equations

(4) are invariant since Uz and 853 &Te invarient. Thus the boundary layer
equations have subtensor character. This is not too surprising since what
destroys thé tensor character of this approximation is the transformation
(3) and this is not affected by (1). Also in the subtensor form it becomes
obvious that the boundary layer equations reduce to "Cartesian form" for
any surface of zero curvature (flat 2-space) in which the coordinates =&

are Cartesian coordinates provided that a geodesic normal coordinate systen

is used, i.e. 333 = 1. This conclusion differs from Hawarth's, [2] ,

because he restricts his analysis (which uses a geodesic normal system) to
coordinate systems xa vhich can be Cartesian only for pla.nes and cylinders.
Because of the subtensor character of (4) there is complete freedom in the
choice of x*. BHowever , the choice of Cartesian coordinates 'xa on a
developable surface may not always be the most advantageous. .For example,

the form of the terms n; o vhich are determined by the external flow, may

be complicated by such a choice. It must be remembered that the conclusion
concerning when the boundary layer equations reduce to Cartesian form

applies only to within the approximations of the standard theory. For
example, for the flow over on open-ended cylinder the equations are in
Cartesian form(for appropriate x®) but the usual boundary layer approximations
become invalid as the distance from the leading edge increases. Finally, it "
may be noted, even for flow over a plane the equations will have curvature

terms appearing if x% are not Cartesian coordinates.

The boundary layer equations (4) can be writter in the more conventional
form in terms of the physical components of the velocity. Before doing this
let us specialize to orthogonal coordinates xa and change the notation for

the metric tensor

2
84 = 8y
a =h 2 (no summation) (5)
o Q

2
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where ha is not a function of x3 . Also denote the physical components
of the velocity‘by u, v, and w. Thus

uE \
v = /b
¥ = g/t

since for (4) the metric tensor components are the lower case h's. In
terms of the physical components, using x, y, and z as coordinates, equations
(%) become

W, + g/ + v /by + uvhy /by - Vohy /hhy
* wuz/h3 = - x/hy + wzz/b:

RV LURR LWL

$wv /iy = e Byt W, /h_;" (6)

X, =0

[(hzh}u)x + (hlhav)y] /b, 4 wz/h3 =0

vhere the subscripts t, x, y, and z denote partial differentiation. These
reduce to Howarth's equations [2] for h3 =1, 1.e. ¢ geodesic normal coordinate
system. Hayes, [l&] , glves these equations (1f compressibility is neglected
in his equations) except that he, in some way, allovs h3 to depead on ¢.

Finally, it can be remarked that, to examine the flow in the neighbvor-
%00d of & stagnaticn point, as Hovarth has done, [10] , 1t is cnly necessary
to introduce & Riemannian coordinate system for & vith origin at the
stagnation point, |

'. SECONDARY FLOW

Since the boundary layer equations are invariant under transformations
@ of the surface coordinates xa, it is natural to look for coordinates whish,
' under certein conditions, simplify the general equations. An ingenious

12




choice of coordinates was made by Hayes, D&J . For a steady external
flow the coordinate xl 1s chosen along the streamlines of the external
flow evaluated on the surface and x2 is along the orthogonal trajectories
of these streamlines. If U and V are the physical components of the
external flow, evaluated on the surface, in the x and y (or x* and 22)
directions, then for this choice of coordinates V = 0 and

(7)

vhere

k = b/
i.e. k 18 the geodesic curvature of the streamlines. Consider steady flow
in the boundary leyer. The boundary conditions for v are
ve0, X —=w ¢
and, if the surface over which the flow is considered is a solid, non-

‘spinning body,

v=0,2z =0
Now if k = O, it is seen from (7) and the second equation of (6) that
v = 0 is & solution. The term "secondary flow '(also cross flow) is used
to indicate that the streamlines in the boundary layer flow do not coincj:de
with the external flow streamiines evaluated on the body. Also k = O has &
simple geometric interpretation: the streamlines are geodesics of
the surface. Thus, for sjbea.dy flow over a non-spinning body, there is no
secondary flow if the external flow streamlines are geodesics of the body
surface.

A simple example of the above conclusion is provided by the flow over
a flat plate with an arbitrary leading ecdge placed in a uniform stream at
no angle of attack; see Figure 1.

= .
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The external flow streamlines are just straight lines on the plate so
there is no secondary flow. (Moore, [5] , reaches this conclusion by
finding & solution of the flow equations. He also indicates how
difficulties arise if the leading edge does not have a continuously
turning tangent.) A special case of this is the yawed flat plate.

However consider yawed infinite cylinders, which many suthors have done,
[1,] . Iﬁ is easy to see, using the above criterion, that the yawed flat
plate is the only case with no secondary flow since for any otuer cylinder
the external flow streamlines cannot be geodesics.

Since v = O in the streamline coordinates for k = O, the boundary
layer flow 1s essentially two-dimensional. Egquations (6), written for
a geodesic normal system, become

u\sc/hl +wu, = UUx/hl +v,
‘ =0 (8)

Z
(h2u) x/hlha +tw, =0

A new coordinate, X, can be introduced,

X
x=[ h, dx
o 1

and then equations (8) are seen to be in exactly the form of the boundary
layer equations over & body of revolulion. Therefore the same
transformation that Mangler, [11] , has introduced will reduce eguations
(8) to the standard two-dimensional equations. Mangler?s transformation

is }_j;x h22dx

U= Byt
(9)

15




and that the transformation to new velocity components (u',w') does
not follow a tensor law. Hayes has indicated the possibility of

|
|
|
Note that the coordinate transformation here is not of the type (1) l
trensforming the no-secondary flow equations to two-dimensional . ‘

form. However his transformation is made by choosing the form of the
metric tensor in a suitable manner and it would be very difficult

to find out exactly what the transformed coordinates are. From the
discussion above it is seen that the transformation is Just that of
Mangler, except that y appears as a psrameter.

DISPLACEMENT SURFACE

The displacement of the external flow streamlines by the retarding
action of the boundary layer is an important effect. In two-dinensional
flow the definition of displacement thickness, which is a measure of
fhis effect, is straightforward and there are several equivalent
definitibns. In three-dimensional flow, if one proéeeds in strict
analogy to the two-dimensional case, two displacement thicknesses '
can be defined . These are 8 , and & vwhere

) [ 9] 8 xl x2,
h b)
Ud , = (U - u) dx
)
| (10)

h
p 3
V5x2"'j; (V-v)d

16




in vwhich (u,v) and (U,V) are the physicel components of the velocity in
the xl and x2 directions in the boundary layer and the external flow
vespectively and h is "some location well cutside the boundary layer."
(The coordinates xcx are again general coordinetes, not the streamline
coordinates of the previous section.) Moore refers to these lengths &s
characterizing mass flow defects and then, using these, defines a
displacement surface as follows. In a geodesic normal coordinate systen,
the displacement surface x3 = A(xl',xz) is an "impermeable surface which
would deflect a nonviscous fluid in such a way as to produce a normal
velocity (W) satisfying"

W= (2 ,x°) et x° = h(xd,x?)

vhere h has the same meaning as above, and W 1s the external flow normal
velocity. After some approximations Moore gives a differentiel equation
for A, [9] 3 '

Here, using a slight modification of one of the two-dimensional
definitions, an equation for A is obtained. This approach is quite
different from Moore's but, making just the boundary layer approximations,
this equation reduces to that of Moore. Analysis of the original equation

shows an interesting difference between the three- and two-dimensional cases.

In the following derivation geodesic normal coordinates are used and
all vectors are in physical components. It is convenient to use the suffix
notation for the range 1, 2 but we set z = x5 . First we dispose of some
geometrical preliminaries. It can be shown that (see [5] , for example)
the metric tensor components gaﬁ are quadratic functions of 2z

2
Bup = %p * 2baaz + Cogl (11)

vhere aaB has already been defined and

Cop = (aagaﬁ/az2 )0/2.

17
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Also the following relation holds

op.
Cop = & baabﬁp (12)

Specializing to orthogonal surface coordinates, by means of (12),
equations (11) can be written as a perfect square. In the notation

of (5)

B,=h +242 (13)
vhere
s, - bcn/ha (no summation) (1%)

If on a surface z = ¢ = constant we draw a simply chosed curve, the
tangent vector, A, and the normal vector, n, have the components

A (Hdx'/ds, Hax°/as)
(15)
n: (-HEdx°/ds, Hdx'/as)

where S is the arc length along the curve.

To define a displacement surface we consider the flux of fluid
through a developable surface S formed by the normals to the surface z = O,
pessing through a simply closed curved Ko on z = O3 see Fig. 2.




2=C

FIGURE 2
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This flux-is computed for that part of S betweenz = O and z = h, For a
velocity distribution Q this flux is given by

FQ = js‘q-nds = j;h!;fl (qeg_laxl - ngzd,@)dz .(16) L

vhere Kc is the trace of the developable surface on the surface z = c and
occ<h. The displacement surface
zZ = A(xl ,x2)
is a surfece such that the flux through 8, for O<z<h, is the same for
the following two velocity distridbutions

I: Q1=Q2-Ofor0<z<A

=U
Ql for Ac<z<h
L=V
II: Ql =4
for 0O<z<h
L=V
From (16) we set
Fr=Fn

and this is the condition imposed to find A. Intcercharnging the order of
integration and making use of (13) and (14), after which the line integrals
are calculated for Ko, this requirement yields

,f . (opngx® - g haxt) = 0 (27)
o

where 8

o, = [1+ (v ] + [ (w-w[1+ (2hyiny)] as
© (18)

G, = VA [1 + (zlA/zhl)] + foh (v-- V) [1 + (zll/hl)] ax

The integral in (17) can be written as an integral over the area bounded by
Ko using the "surface divergence theorem" [12] . Since X b is arbitrary
ve then obtain the result

aiv G = 0 (19)
20




for the vector G: (01,02) where the operator div is the "surface
divergence" [12] , 1.0,

div 6 '[ii"("zc’l) + i-é- (nlca)] /b by
or in the subtensor notation (19)can be written

& =0

He
For given velocity distributions I and II and a value of h, (19) is a
differential equation for A. However, in boundary layer theory, h cannot
be given a definite value. In fact, in accordance with the requ:l.rements_
of this theory, we must let h— 9=+ (Extrapolating from the two-dimensional
case, the integrals should converge since u-» U, v-»V exponentially as
Xpt0) '

Thus far we have made no approximations. We take (U,V) to be the
(physical) velocity components, in the xl and x2 directions, of the external
flow evaluated on the surface z = O and (u,v) the corresponding velocity.
components throughout the boundary layer. Applying a transformation of
the type (3) to z and A and keeping only the lowest order terms in (18)
glves the boundary leyer approximation to Gl and 62

G, = UA + f°° (uw-Udz=Ub-8,)

o T (o)
Gy = VA + f:w (v = V)az = V(s -8 )

using the definitions (10). With these expressions (20) for the vector G,
(19) 1s essentially Moore's equation,[9], for the displacement surface.
Moore gives some examples of the computation of A for special kinds of
flow. Here we give a simple example by snecializing only the coordinate
system. For the streamline coordinateé of the previous section V = o,
therefore G, = f * vdz and (19) becomes

o]

2 [ngu(a - 8 ) 7t = - amg e - pt )

21




rnus :
ByU(8 - B ) = f F(x 52 )axt + £(x?)

X
vhere f(xa) 1s & constant of the integration with respect to xl and must

be evaluated from the conditions of the flow. Note that in the streamline
coordinates & 2 18 undefined.
b4

The method used above to obtain A is a modification of the
corresponding two-dimensional definition ofi displacement thickn2ss. In
two dimensions the developable surface S is taken to be a plane
perpendicular to the plane of flow and as a result no differential
equation need be solved for the displacement thickness. The A
determined from (19) using (20) differs - from the & of (10) vy a
conata.x}t of integration which, in most cases of interest, 1s zero.

This is discussed by Moore, [ 27 .

However, it is interesting to compare the general expressions (18)
for the vector G in the two- and three-dimeneional cases. lLet x2 =0
be the plane of flow for a two-dimeneional flow., Then v = V = 0 aad
it is easy to show that 12 = 0. Thus the terms that are neglected after
meking the boundary layer approximations to obtain (20) disappear auto-
matically for the special case of two-dimensional flow. This would be
important 1f one wanted to calculate approximations to a viscous flow
beyond the classical boundary layer theory as Kuo " [ 15J , has done for
two-dimensional flow past a flat plate. For two-dimensional flow the
displaceunent thickness expression does not change for the higher order
approximations whereas for three dimensional flow, including axially
syrinetric flow, an expansion of the expressicns (18) 1in powers of vl/ 2

would ve necessary,
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